ELSEVIER

Contents lists available at ScienceDirect

# Diabetes Research and Clinical Practice

journal homepage: www.journals.elsevier.com/diabetes-research-and-clinical-practice



# Ethnic differences in risk of renal disease progression amongst young-onset type 2 diabetes in New Zealand

Kanchana Perera <sup>a,b,c</sup>, John Baker <sup>d,e</sup>, Kalpa Jayanatha <sup>f,g</sup>, Karen Pickering <sup>d</sup>, Richard Cutfield <sup>d,h</sup>, Brandon Orr-Walker <sup>d,e</sup>, Gerhard Sundborn <sup>i</sup>, Andrew Heroy <sup>b,c</sup>, Thomas Arnold ScM <sup>b,c,j</sup>, Dahai Yu <sup>k</sup>, David Simmons <sup>a,d,l,\*</sup>

- <sup>a</sup> School of Medicine, Western Sydney University, Narellan Road & Gilchrist Dr, Campbelltown NSW 2560, Australia
- b Military Cardiovascular Outcomes Research Program, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
- <sup>c</sup> Metis Foundation, 84 NE Interstate Loop 410, Suite 325, San Antonio, TX 78216, USA
- d Diabetes Foundation Aotearoa, 2/100 Alexander Crescent, Ōtara, Auckland 2023, New Zealand
- e Department of Diabetes and Endocrinology, Counties Manukau Health, 100 Hospital Road, Middlemore Hospital, Auckland 2025, New Zealand
- f Department of Renal Medicine, Middlemore Hospital, Hospital Road, Ōtāhuhu, Auckland 1640, New Zealand
- g School of Medicine, Faculty of Medical & Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
- h Department of Diabetes and Endocrinology, Waitemata District Health Board, Building 34 Western Campus, Middlemore Hospital, Ōtāhuhu, Auckland 1640, New Zealand
- i Section of Pacific Health, University of Auckland, School of Population Health, Faculty of Medical and Health Sciences, 22-30 Park Ave, Grafton, Auckland 1023, New Zealand
- <sup>j</sup> Department of Biostatistics, Brown University, 121 S, Main Street, Providence, RI 02903, USA
- k Primary Care Centre versus Arthritis, School of Medicine, Keele University, David Weatherall Building, University Road, Staffordshire ST5 5BG, UK
- <sup>1</sup> Translational Health Research Institute (THRI), Western Sydney University, Campbelltown, Sydney, NSW 2560, Australia

#### ARTICLE INFO

# Keywords: Diabetic kidney disease HbA<sub>1c</sub> Microalbuminuria Systolic blood pressure Type 2 diabetes mellitus Young-onset diabetes

#### ABSTRACT

Aim: Māori and Pacific adults in New Zealand (NZ) with type 2 diabetes are at high risk of Diabetic Kidney Disease (DKD). This study assessed whether the same was true in young-onset type 2 diabetes.

*Methods*: We conducted a secondary analysis of young adults 18–40 years enrolled in a (1994–2018) NZ primary care cohort. DKD risk was classified as minimal or elevated using Urine Albumin-Creatinine Ratio (UACR) and Estimated Glomerular Filtration Rate (eGFR), with hyperfiltration (eGFR  $\geq$  120 mL/min/1.73 m<sup>2</sup>) considered an early marker. Logistic regression identified predictors of elevated DKD risk.

Results: Among 2,184 participants (46 % Pacific people, 31 % Māori, 23 % NZ European: 54 % female, mean age  $33.9 \pm 4.9$  years, mean BMI  $38.0 \pm 8.7$  kg/m², diabetes duration 1.7 years), elevated DKD risk was more common in Pacific People (37.4 %) and Māori (33.5 %) than NZE (23.3 %; p < 0.001) with adjusted odds ratio (vs NZE) of 1.96 (95 % CI: 1.50–2.57) and 1.41 (1.06–1.87) respectively. Māori had less risk than Pasifika (odds ratio 0.72 (0.58–0.89)). Independent predictors of DKD risk included ethnicity, triglyceride-HDL ratio, systolic blood pressure, antihypertensive use, and HbA<sub>1c</sub>: BMI was not significant.

Conclusions: Pacific and Māori with young-onset type 2 diabetes face a disproportionately higher DKD risk.

#### 1. Introduction

The global burden of type 2 diabetes is increasing, with a notable rise among adults under 40 years of age, now termed "young-onset type 2 diabetes" [1–3]. Once considered a disease of older populations, young-

onset type 2 diabetes now presents a growing public health concern due to its early onset, prolonged exposure to hyperglycaemia, accelerated risk of long-term complications, including cardiovascular disease, neuropathy, and diabetic kidney disease (DKD) [4,5] and relative resistance to current treatment [6].

<sup>\*</sup> Corresponding author at: School of Medicine, Western Sydney University, Macarthur Clinical School, Parkside Crescent, Campbelltown, NSW 2560, Australia. E-mail addresses: 20671206@student.westernsydney.edu.au (K. Perera), john.baker@middlemore.co.nz (J. Baker), kalpa.jayanatha@middlemore.co.nz (K. Jayanatha), kpickering@diabetesfoundationaotearoa.nz (K. Pickering), rick.cutfield@waitematadhb.govt.nz (R. Cutfield), brandon.orr-walker@middlemore.co.nz (B. Orr-Walker), g.sundborn@auckland.ac.nz (G. Sundborn), andrew.heroy.ctr@usuhs.edu (A. Heroy), thomas.arnold.ctr@usuhs.edu (T.A. ScM), d.yu@keele.ac.uk (D. Yu), da.simmons@westernsydney.edu.au (D. Simmons).

DKD remains one of the most serious microvascular complications, characterized by progressive renal damage that is often asymptomatic in its early stages [7]. Two key biomarkers are used to assess kidney function: the estimated glomerular filtration rate (eGFR), which reflects renal filtration capacity, and the urine albumin-creatinine ratio (UACR), which indicates albuminuria. Elevated UACR often precedes declines in GFR and serves as an early indicator of kidney injury [8,9]. Conversely, glomerular hyperfiltration, elevated GFR, may signal early intraglomerular hemodynamic changes and is associated with progressive renal decline [8]. The combined use of eGFR and UACR offers enhanced risk stratification and supports earlier clinical intervention [8,9].

In New Zealand, type 2 diabetes has reached epidemic proportions, particularly among young adults and Māori and Pacific communities. Māori and Pacific People are disproportionately affected, with complication rates approximately two to three times higher than New Zealand Europeans (NZE) [10,11]. Evidence suggests type 2 diabetes follows a more aggressive course in Māori and Pacific adults [12]; however, it is unclear whether those with young-onset type 2 diabetes from these groups also exhibit greater risk for DKD progression [10,12].

The aim of this study is to assess whether DKD progression risk was higher in Māori and Pacific people with young-onset type 2 diabetes than their NZE counterparts using a composite classification of UACR and eGFR to better reflect overall kidney disease burden.

# 2. Methods

# 2.1. Study design

This study involved NZE, Māori, and Pacific young adults, aged 18–40 years, with type 2 diabetes who were enrolled in the Diabetes Care Support Service (DCSS) between 1994 and 2018. The DCSS is a longitudinal primary care diabetes audit program based in South and West Auckland, New Zealand across 217 primary care practitioners (general practitioners). The DCSS contains detailed data on participant demographics, risk factors, clinical measurements, diagnosed diabetes complications, and medications [13]. Data accuracy has been ensured through enumeration assessments and robust internal quality control measures, including regular audits, random and routine sampling, and active data management [14,15].

# 2.2. Risk factors

Young-onset type 2 diabetes was defined by primary care record coding and validated by trained diabetes auditors [16,17]. Baseline socio-demographic and clinical characteristics included ethnicity, age at diagnosis, duration of type 2 diabetes, body mass index (BMI), smoking status, blood pressure,  $HbA_{1c}$ , blood lipids, and treatments for hypertension, diabetes, and antiplatelet/anticoagulants. Socioeconomic position was assessed using the NZDep2013 index from the Department of Public Health, University of Otago (Otago, New Zealand), which categorizes deprivation levels across 5 groups: IMD-1 (least deprived), IMD-2, IMD-3, IMD-4, and IMD-5 (most deprived) [18].

Participants were grouped by self-identified ethnicity: Māori (Indigenous Polynesian), Pacific people (93 % Polynesian, 7 % Melanesian, Micronesian), and NZE. Māori were defined as those with any Māori ancestry, Pacific people as individuals identifying as Samoan, Tongan, Fijian, Niuean, or other Pacific ethnicities (excluding Māori), and NZE as those identifying with European ancestry. This approach ensures statistical power for ethnic comparisons.

# 2.3. Diabetes definition and classification

Type 2 diabetes was identified using diagnostic coding from general practice electronic medical records within the DCSS. In accordance with prior DCSS publications [13], diagnoses were based on general practitioner and/or hospital-entered Read or ICD-10 codes consistent with

type 2 diabetes, with manual case validation undertaken by trained diabetes nurses and audit staff. Individuals with diagnostic codes for type 1 diabetes or other specified diabetes type (e.g., secondary or monogenic) were excluded.

As part of the data validation process, we initially performed a subgroup analysis excluding participants prescribed insulin therapy to assess potential misclassification. However, because there were no significant differences in clinical characteristics between insulin-treated and non–insulin-treated participants, the full cohort was retained for the final analyses.

#### 2.4. Determination of kidney risk

The primary outcome of this study was the risk of progression to DKD, assessed using a composite classification of UACR and eGFR. Following guidelines from the Kidney Disease: Improving Global Outcomes (KDIGO) 2012 clinical practice framework [8], participants were categorized into a 9-cell matrix combining three eGFR categories (>120, 90–119, and <90 mL/min/1.73 m<sup>2</sup>) with three UACR categories (<3, 3-30, and >30 mg/mmol). While sex-specific UACR cut-offs (2.5 mg/ mmol for males and 3.5 mg/mmol for females) have been recommended for Māori and Pacific populations to improve risk stratification, we applied the standard KDIGO thresholds across all participants to maintain consistency and comparability within the cohort and with international studies. Importantly, eGFR  $\geq$ 120 mL/min/1.73 m<sup>2</sup> was used as a proxy for glomerular hyperfiltration, which is increasingly recognized as an early marker of DKD, particularly in young individuals with type 2 diabetes [19]. Hyperfiltration reflects increased intraglomerular pressure and is associated with subsequent decline in kidney function, even in the absence of elevated UACR [8,12].

Participants were stratified into two DKD risk grades based on the combined eGFR/UACR matrix:

- Minimal risk (green), typically characterized by normal eGFR with low UACR
- $\bullet$  Elevated risk (orange/red), which includes those with reduced eGFR and/or raised UACR, as well as those with hyperfiltration (eGFR  $\geq 120$  mL/min/1.73  $m^2$ ) and elevated UACR

This modified KDIGO heat map (Fig. 1) allows early detection of renal dysfunction across a spectrum of presentations, from subtle albuminuria to hyperfiltration, and facilitates proactive risk stratification and individualized intervention.

For this study, eGFR was recalculated using the CKD-Epi 2021 equation, which has been shown to offer improved performance over the MDRD equation, especially at higher eGFR levels, with greater accuracy and without ethnicity adjustment. The CKD-Epi 2021 equation is as follows:

```
\begin{split} \text{eGFR} &= 142 \times \text{min}(\text{standardized}\,S_{\text{cr}}/\kappa, 1)^{\alpha} \\ &\times \text{max}(\text{standardized}\,S_{\text{cr}}/\kappa, 1)^{-1.200} \times 0.9938^{\text{age in years}} \\ &\times 1.012 \text{ [if female]} \end{split}
```

where:  $S_{cr}=$  serum creatinine in mg/dL,  $\kappa=0.7$  (females) or 0.9 (males),  $\alpha=$  -0.241 (females) or -0.302 (males), min(standardized Scr/K,1) = the minimum of  $S_{cr}/\kappa$  or 1, max(standardized  $S_{cr}/K,1)=$  the maximum of  $S_{cr}/\kappa$  or 1.

# 2.5. Statistical analysis

Descriptive statistics were used to summarize the data: frequencies and percentages for categorical variables and means and standard deviations for continuous variables. Ethnic differences in baseline sociodemographic and clinical characteristics were analysed using Chisquare tests for categorical variables and ANOVA with post-hoc Tukey

| DKD Risk<br>Classification         |                                   | UACR categories (mg/mmol)    |                                        |                                 |  |
|------------------------------------|-----------------------------------|------------------------------|----------------------------------------|---------------------------------|--|
|                                    |                                   | Normoalbumuria<br>(UACR < 3) | Microalbuminuria $(3 \le UACR \le 30)$ | Macroalbuminuria<br>(UACR > 30) |  |
| ories<br>3m²)                      | Normal $(90 \le eGFR \le 120)$    | Minimal Risk                 | Minimal Risk                           | Moderate Risk                   |  |
| eGFR categories<br>(ml/min/1.73m²) | Hyperfiltration (eGFR $\geq$ 120) | Minimal Risk                 | Moderate Risk                          | High Risk                       |  |
|                                    | Mild-Severe<br>(eGFR < 90)        | Moderate Risk                | High Risk                              | High Risk                       |  |

Fig. 1. Modified KDIGO risk grading for DKD based on a composite UACR/eGFR threshold.

tests for continuous variables. Variables with skewed distributions were log-transformed as needed, and geometric means with 95 % confidence intervals were presented for continuous outcomes.

To examine the impact of socio-demographic and clinical factors on DKD risk, we employed a logistic regression with stepwise variable selection to identify significant predictors of DKD risk. The process forced the inclusion of ethnicity as a variable and then systematically evaluated additional demographic and clinical predictors including sex, BMI, deprivation status, smoking status, medication use, age, blood pressure, lipid ratio, and HbA1c. Variables were considered for entry into the model if they demonstrated a statistical significance of p < 0.30. After each addition, all variables currently in the model were reassessed, and any that no longer maintained a significance of p < 0.35 were removed. These thresholds were selected to allow for the inclusion of potentially meaningful predictors during exploratory analysis, whilst maintaining control over model complexity. This iterative forward-backward selection process continued until no additional variables met the criteria for entry and all included variables remained above the significance threshold for retention.

To evaluate the consistency of DKD risk factors across clinical strata, exploratory subgroup analyses were conducted by obesity status (BMI >30 kg/m<sup>2</sup> vs <30 kg/m<sup>2</sup>) and by antihypertensive prescription (yes vs no). The obesity-stratified models were undertaken to assess whether metabolic predictors such as TG:HDL ratio and HbA1c differed by adiposity level, and to address potential misclassification of diabetes type among lean, insulin-treated individuals. Analyses stratified by antihypertensive use examined whether associations between systolic blood pressure and DKD risk persisted among those under active bloodpressure management. Although BMI was not expected to be a primary determinant of DKD in this cohort, a relationship between obesity and DKD risk has been reported in other populations [20,21,22]; therefore, subgroup analyses by obesity status were conducted to examine whether this association was evident in the DCSS cohort. These subgroup analyses were pre-specified as sensitivity checks to determine whether key predictors of DKD risk were robust across differing metabolic and treatment contexts.

Separate multivariable logistic regression models were fitted within each subgroup, adjusting for the same covariates as in the primary analysis. Heterogeneity was assessed by comparing regression coefficients and confidence intervals across strata. All statistical analyses were performed using SAS version 9.4, and statistical significance was evaluated at a two-sided  $\alpha$  level of 0.05, unless otherwise specified.

# 3. Results

Of the 2757 participants enrolled in the cohort, we excluded those self-identifying into an ethnic group other than NZE, Māori, or Pacific People (n=573), resulting in 2184 participants being included in the current analysis.

Baseline socio-demographic and clinical characteristics stratified by

ethnicity are presented in Tables 1 and 2. Of the 2,184 participants with young-onset type 2 diabetes, the sample comprised of 46 % Pacific people, 31 % Māori, 23 % NZE; 54 % female, with a mean age 33.9  $\pm$ 4.9 years. Māori and Pacific People at elevated risk for DKD had higher BMI, lower socioeconomic status, and higher HbA<sub>1c</sub> compared with NZE. They were also more likely to be prescribed antihypertensive, antidiabetes, and lipid-lowering medications. Pacific people had lower systolic and diastolic blood pressure compared with Maori. Smoking prevalence was highest among Māori, followed by Pacific people, and lowest among NZE. When stratified by DKD risk, a significantly greater proportion of Pacific people (37.4 %) and Māori (33.5 %) were classified as being at elevated risk for DKD progression compared with NZE (23.3 %; p < 0.001). Of those prescribed insulin therapy, 79.6 % were obese (BMI  $\geq$  30 kg/m<sup>2</sup>) and 20.4 % were non-obese, suggesting that insulin use predominantly occurred among individuals with obesity and longstanding type 2 diabetes rather than lean individuals with possible type 1 diabetes. Diabetes duration was right-skewed, with many participants recorded as newly diagnosed (median 0.0 years). Participants treated with insulin had a longer duration of diabetes than those not on insulin (median 1.0 [0.0-4.0] vs 0.0 [0.0-1.0] years; Wilcoxon rank-sum p < 0.0001). However, the majority of participants in both groups had a recorded duration of 0 years. Among individuals with eGFR >120 mL/ min/1.72 m<sup>2</sup>, 43.5 % had normoalbuminuria (UACR <3 mg/mmol), indicating that a proportion of those with hyperfiltration may not be identified using UACR alone.

When examined independently, glomerular hyperfiltration was observed in 18.9 % of participants. Hyperfiltration was significantly more common among Māori and Pacific individuals than NZE (p < 0.0048). It was also associated with younger index age, younger age at diabetes diagnosis, lower diastolic blood pressure, lower total cholesterol, lower total and HDL cholesterol, higher UACR, higher HbA $_{1c}$ , lower likelihood of insulin treatments, higher likelihood of anti-lipid treatment, and a higher likelihood of antihypertensive treatment (all p < 0.05).

Table 3 presents the results of a stepwise logistic regression analysis examining independent predictors of elevated DKD risk among youngonset type 2 diabetes participants. Ethnicity emerged as a significant predictor, with Pacific People showing a markedly elevated risk compared to NZE (odds ratio [OR] 1.96, 95 % CI 1.50–2.57; p < 0.001), as did Māori (OR 1.41, 95 % CI 1.06–1.87; p = 0.017). However, Māori had a lower risk than Pacific people (OR 0.72, 95 % CI 0.58–0.89; p =0.003). Systolic blood pressure (SBP) was another significant factor; each 10 mmHg increase in SBP was associated with a statistically significant increase in the risk of DKD progression (OR 1.10, 95 % CI: 1.00–1.22, p < 0.001). A higher triglyceride-to-HDL (TG:HDL) cholesterol ratio had a strong association (OR 1.21, 95 % CI: 1.13-1.31, p < 0.001), as did hyperglycaemia, with higher HbA<sub>1c</sub> significantly increasing DKD risk (OR 1.21, 95 % CI: 1.09–1.33, p < 0.001). The use of antihypertensive medications was also associated with increased odds of DKD risk (OR 1.74, 95 % CI: 1.35–2.26, *p* < 0.001), likely reflecting both

Table 1 Baseline demographic and metabolic characteristics of DCSS young adult participants – continuous variables (N=2184).

| Characteristic                          | Overall ( $N = 2184$ ) | NZE (n = 497)  | Māori (n = 675) | Pacific People ( $n=1012$ ) | p                  |
|-----------------------------------------|------------------------|----------------|-----------------|-----------------------------|--------------------|
| Age at Enrolment, Years                 | $33.9 \pm 4.9$         | $34.3 \pm 4.6$ | $33.6 \pm 5.2$  | $33.9 \pm 5.0$              | 0.026 <sup>a</sup> |
| Age at Type 2 Diabetes Diagnosis, Years | $32.2 \pm 5.5$         | $32.8 \pm 5.4$ | $31.7 \pm 5.8$  | $32.2 \pm 5.4$              | $0.001^{a}$        |
| Duration of Type 2 Diabetes*, Years     | 2.5 (2.3–17.9)         | 2.4 (2.1-18.0) | 2.7 (2.4–19.8)  | 2.4 (2.2–17.4)              | 0.100              |
| Body Mass Index, kg/m <sup>2</sup>      | $38.0\pm8.7$           | $35.6 \pm 8.2$ | $38.8 \pm 8.6$  | $38.8\pm8.7$                | $< 0.001^{a,b}$    |
| Blood Pressure, mmHg                    |                        |                |                 |                             |                    |
| Systolic                                | $127.8\pm15.7$         | $129.3\pm14.5$ | $128.5\pm17.0$  | $126.5\pm15.4$              | $0.002^{b,c}$      |
| Diastolic                               | $82.2\pm11.0$          | $81.8\pm10.0$  | $83.2\pm11.8$   | $81.7\pm10.9$               | 0.015 <sup>c</sup> |
| Lipids, mmol/l                          |                        |                |                 |                             |                    |
| Total Cholesterol (TC)                  | $5.1\pm1.2$            | $5.1\pm1.3$    | $5.2\pm1.2$     | $5.0\pm1.2$                 | 0.092              |
| Low-Density Lipoprotein (LDL)           | $2.8\pm1.1$            | $2.7\pm1.0$    | $2.8\pm1.2$     | $2.8\pm1.1$                 | 0.391              |
| High-Density Lipoprotein (HDL)          | $1.1\pm0.3$            | $1.1\pm0.4$    | $1.1\pm0.3$     | $1.1\pm0.3$                 | $< 0.001^{a,c}$    |
| Triglyceride (TG) *                     | 2.1 (1.6-16.9)         | 1.9 (1.8-14.0) | 2.5 (2.4-18.2)  | 1.9 (1.9–13.9)              | $< 0.001^{a,c}$    |
| TG:HDL*                                 | 1.9 (1.9-13.9)         | 1.8 (1.6-12.9) | 2.4 (2.3-17.6)  | 1.7 (1.7–12.6)              | $< 0.001^{a,c}$    |
| HbA <sub>1c</sub> , %                   | $8.5\pm2.1$            | $7.6\pm1.9$    | $8.6 \pm 2.1$   | $8.8\pm2.2$                 | $< 0.001^{a,b}$    |
| HbA <sub>1c</sub> , mmol/mol            | $69\pm23$              | $60\pm21$      | $71\pm23$       | $72\pm24$                   | $< 0.001^{a,b}$    |
| UACR*, mg/mmol                          | 3.3 (3.1-24.4)         | 1.3 (1.2-10.2) | 3.9 (3.5-29.7)  | 4.6 (4.2–34.5)              | $< 0.001^{a,b}$    |
| eGFR, mL/min/1.73 m <sup>2</sup>        | $107.0\pm18.3$         | $106.3\pm17.5$ | $108.3\pm17.6$  | $106.6\pm19.0$              | 0.105              |

Data presented as mean  $\pm$  SD.

Post-hoc Tukey comparisons were performed when an overall difference was found (p < 0.05) and indicated with different letter superscripts: <sup>a</sup>NZE vs. Maori; <sup>b</sup>NZE vs. Pacific People; <sup>c</sup>Maori vs. Pacific People.

treatment need and underlying risk. While age showed a weak inverse relationship with DKD risk (OR 0.98, 95 % CI: 0.97–1.00, p=0.087), it did not reach statistical significance. Notably, body mass index (BMI) was not significantly associated with DKD risk and was excluded from the final model.

In the subgroup analyses stratified by obesity status (obese vs. nonobese) and antihypertensive prescription (prescribed vs. not prescribed) (supplemental Tables 1 and 2), the associations for TG:HDL ratio and  $HbA_{1c}$  were directionally consistent across all subgroups, though effect sizes were slightly attenuated and statistical significance varied. Among participants with obesity, DKD risk was independently associated with Pacific and Māori ethnicity, higher TG:HDL ratio, systolic blood pressure,  $HbA_{1c}$ , and use of antihypertensive therapy. In contrast, among non-obese participants, TG:HDL ratio was the only significant predictor of DKD risk.

# 4. Discussion

This study is the first to investigate the potential of combining eGFR and UACR as a tool for assessing DKD risk in young-onset type 2 diabetes, particularly within high-risk groups such as Māori and Pacific populations. We demonstrated that DKD risk is already prevalent among young-onset type 2 diabetes in New Zealand, affecting between 23 % and 37 % of individuals depending on ethnicity, with the highest burden observed among Pacific People, followed by Māori and NZE. Beyond ethnicity, key associations with increased DKD risk included higher TG: HDL cholesterol ratio, elevated SBP, antihypertensive medication use, and higher HbA $_{\rm IC}$ . BMI, in contrast, was not significantly associated, underscoring the limited utility of BMI alone in risk stratification for DKD within this population.

Previous studies examining DKD in young adults have largely focused on albuminuria or reduced eGFR, not their combination, as markers of kidney damage, often underestimating early renal changes [23,24]. However, emerging evidence suggests that hyperfiltration, a state of elevated GFR thought to represent early renal dysfunction, may be an important early marker of DKD, particularly in youth-onset type 2 diabetes [25,26]. Hyperfiltration has been identified as a precursor to subsequent eGFR decline and albuminuria, especially among individuals with poor glycaemic control and metabolic dysregulation [25,27]. Given this, the inclusion of hyperfiltration in our definition of DKD risk is both

conceptually and empirically supported [28]. This broader definition allows for earlier detection of at-risk individuals and may enhance clinical decision-making around targeted interventions.

Although individuals with eGFR  $\geq$ 120 mL/min/1.73 m² were included within the elevated DKD risk group, hyperfiltration was not examined as a separate outcome in this analysis. Nonetheless, a notable proportion of these individuals had normoalbuminuria, suggesting that elevated eGFR may identify individuals at risk for DKD who are not detected by albuminuria alone. However, as eGFR is a derived measure with known limitations, particularly in younger, ethnically diverse populations, these observations should be interpreted cautiously. The apparent hyperfiltration may reflect early renal risk but could also arise from inaccuracies in the estimating equations used in this population and the challenges of defining thresholds within a continuous variable.

Independent analysis demonstrated that hyperfiltration was more prevalent among Māori and Pacific individuals and among those with higher BMI, elevated UACR as well as in those receiving antihypertensive or insulin therapy. These findings suggest that glomerular hyperfiltration in young-onset type 2 diabetes may reflect a combination of metabolic and haemodynamic stressors rather than isolated glycaemic exposure. While hyperfiltration is not currently part of the formal DKD definition, its association with these risk factors, particularly among high-risk ethnic groups, supports its value as an early physiological indicator of renal vulnerability [29]. Together, these metabolic and haemodynamic pathways provide a biological basis for early renal injury; however, the markedly higher prevalence of DKD among Māori and Pacific peoples suggests that additional factors, such as genetic predisposition and potentially inequities in healthcare access, also contribute to this disparity.

Both HbA $_{1c}$  and TG:HDL ratio were independently associated with elevated DKD risk, indicating that hyperglycaemia and insulin resistance represent parallel yet interrelated pathways to kidney injury in young-onset type 2 diabetes [12,30,31]. The TG:HDL ratio serves as a surrogate marker of insulin resistance and atherogenic dyslipidaemia [31], while HbA $_{1c}$  reflects chronic glycaemic exposure [12,30]. In the setting of relative insulin deficiency, hyperglycaemia promotes hepatic triglyceride synthesis through increased counter-regulatory hormone activity, linking glucotoxicity and lipotoxicity within a shared pathogenic framework [12,30]. These findings suggest that metabolic dysfunction in young-onset type 2 diabetes operates along both glucose- and lipid-

<sup>\*</sup>Geometric means calculated from log-transformed data and back-transformed. 95% confidence intervals derived from standard error of the mean of log values.

 $\label{eq:control_control_control} \begin{tabular}{ll} Table 2 \\ Baseline demographic and metabolic characteristics of DCSS young adult participants – categorical variables (N = 2184). \\ \end{tabular}$ 

| Characteristic                         | Overall<br>(N = 2184) | NZE<br>(n =<br>497) | Māori<br>(n =<br>675) | Pacific people (n = 1012) | p       |
|----------------------------------------|-----------------------|---------------------|-----------------------|---------------------------|---------|
| Sex: Female                            | 1184                  | 227                 | 358                   | 599                       | < 0.001 |
| beat remaie                            | (54.2)                | (45.7)              | (53.0)                | (59.2)                    | (0.001  |
| BMI: Obese (≥30)                       | 1727                  | 376                 | 590                   | 882                       | < 0.001 |
|                                        | (79.1)                | (75.7)              | (87.4)                | (87.2)                    |         |
| NZDep13 Scale 9 or 10                  | 1146                  | 108                 | 389                   | 649                       | < 0.001 |
| (Most Deprived)                        | (52.5)                | (21.7)              | (57.6)                | (64.1)                    |         |
| Smoking Status:                        | 923                   | 153                 | 383                   | 387                       | < 0.001 |
| Current- or Ex-Smoker                  | (42.3)                | (30.8)              | (56.7)                | (38.2)                    |         |
| UACR, mg/mmol                          |                       |                     |                       |                           |         |
| Normoalbuminuria                       | 1189                  | 379                 | 342                   | 468                       | < 0.001 |
| (<3)                                   | (54.4)                | (76.3)              | (50.7)                | (46.2)                    | <0.001  |
| Microalbuminuria                       | 728                   | 104                 | 247                   | 377                       |         |
| (3–30)                                 | (33.3)                | (20.9)              | (36.6)                | (37.3)                    |         |
| Macroalbuminuria                       | 267                   | 14                  | 86                    | 167                       |         |
| (>30)                                  | (12.2)                | (2.8)               | (12.7)                | (16.5)                    |         |
| eGFR, mL/min/1.73 m <sup>2</sup>       |                       |                     |                       |                           |         |
| Hyperfiltration                        | 412                   | 68                  | 157                   | 187                       | < 0.001 |
| (>120)                                 | (18.9)                | (13.7)              | (23.3)                | (18.5)                    | <0.001  |
| (≥120)<br>Normal (90–119)              | 1417                  | 345                 | 422                   | 650                       |         |
| Normai (90–119)                        | (64.9)                | (69.4)              | (62.5)                | (64.2)                    |         |
| Mildly-Severely                        | 355                   | 84                  | 96                    | 175                       |         |
| Decreased (<90)                        | (16.3)                | (16.9)              | (14.2)                | (17.3)                    |         |
|                                        |                       |                     |                       |                           |         |
| Risk of DKD                            |                       |                     |                       |                           |         |
| Minimal                                | 1464                  | 381                 | 449                   | 634                       | < 0.001 |
|                                        | (67.0)                | (76.7)              | (66.5)                | (62.7)                    |         |
| Moderate/High                          | 720                   | 116                 | 226                   | 378                       |         |
| n 11 1                                 | (33.0)                | (23.3)              | (33.5)                | (37.4)                    | 0.001   |
| Prescribed                             | 1508                  | 302                 | 499                   | 707                       | < 0.001 |
| Antihypertensive                       | (69.1)                | (60.8)              | (73.9)                | (69.9)                    |         |
| Treatment: Yes                         | 764                   | 174                 | 252                   | 220                       | 0.252   |
| Prescribed Insulin                     | 764                   | 174                 | 252                   | 338                       | 0.252   |
| Treatment: Yes Prescribed Antidiabetes | (35.0)<br>2016        | (35.0)<br>439       | (37.3)<br>629         | (33.4)<br>948             | < 0.001 |
| Medication: Yes                        |                       |                     |                       |                           | <0.001  |
| Prescribed Antilipid                   | (92.3)<br>1383        | (88.3)<br>303       | (93.2)<br>472         | (93.7)<br>608             | < 0.001 |
| Medication: Yes                        |                       |                     |                       |                           | < 0.001 |
| wiedication: Yes                       | (63.3)                | (61.0)              | (69.9)                | (60.1)                    |         |

Data presented as n (%).

mediated axes, each amplifying renal microvascular injury. This dual mechanism may explain why DKD risk was greatest among participants with poor glycaemic control and elevated TG:HDL ratios, reinforcing the importance of addressing both dyslipidaemia and hyperglycaemia in early, multifactorial prevention strategies.

A subgroup analysis of insulin-treated participants indicated that nearly four in five were obese, supporting that insulin use in this cohort likely reflects more advanced disease and  $\beta\text{-cell}$  dysfunction within the context of insulin resistance rather than type 1 diabetes misclassification. Although diabetes duration was statistically longer among insulintreated participants, most individuals in both groups had a recorded duration of 0 years (diagnosed at or near baseline), so this difference is probably of limited clinical relevance. The coexistence of insulin resistance and declining beta-cell capacity in young-onset type 2 diabetes may explain the higher HbA $_{1c}$  and consequent DKD risk observed among those requiring insulin therapy.

The higher DKD risk observed among Māori and Pacific peoples likely reflects a complex interplay of biological, environmental, and systemic factors. Genetic influences, including variation in renal sodium transport, insulin signalling, and inflammatory pathways, may predispose these groups to early glomerular injury and metabolic dysfunction [32,33]. Disparities in healthcare access have been shown elsewhere, such as later diabetes diagnosis, and reduced access to culturally

**Table 3**Stepwise logistic regression analysis of factors associated with elevated DKD risk

| Outcome: DKD risk                 | Regression coefficient | $\chi^2$ | p       | Odds ratio<br>(95 % CI) |
|-----------------------------------|------------------------|----------|---------|-------------------------|
| Intercept                         | -2.769                 | 24.824   | < 0.001 | _                       |
| Prescribed                        | 0.687                  | 35.736   | < 0.001 | 1.99                    |
| Antihypertensives: Yes vs. No     |                        |          |         | (1.59–2.50)             |
| Ethnicity: Pacific People         | 0.674                  | 24.249   | < 0.001 | 1.96                    |
| vs. NZE                           |                        |          |         | (1.50-2.57)             |
| Ethnicity: Māori vs. NZE          | 0.343                  | 5.688    | 0.017   | 1.41                    |
|                                   |                        |          |         | (1.06-1.87)             |
| Ethnicity: Māori vs.              | -0.331                 | 9.057    | 0.003   | 0.72                    |
| Pacific People                    |                        |          |         | (0.58-0.89)             |
| TG:HDL Ratio (natural             | 0.297                  | 19.453   | < 0.001 | 1.35                    |
| log, per 1-unit)                  |                        |          |         | (1.18-1.54)             |
| SBP, per 10 mmHg                  | 0.100                  | 11.848   | 0.001   | 1.11                    |
|                                   |                        |          |         | (1.05-1.22)             |
| $HbA_{1c}$ , per 1 % $\approx 10$ | 0.051                  | 4.988    | 0.026   | 1.05                    |
| mmol/mol                          |                        |          |         | (1.01-1.10)             |
| Index Age, per year               | -0.016                 | 2.927    | 0.087   | 0.98                    |
|                                   |                        |          |         | (0.97-1.00)             |
| NZDep13: Most Deprived            | -0.130                 | 1.714    | 0.191   | 0.88                    |
| vs. All Others                    |                        |          |         | (0.72-1.07)             |
| Prescribed Antidiabetes:          | -0.230                 | 1.506    | 0.220   | 0.80                    |
| Yes vs. No                        |                        |          |         | (0.55-1.15)             |

Variables significant in univariate analyses (ethnicity, sex, BMI, socioeconomic position, smoking status, etc.) were included in the stepwise logistic regression model.

 $HbA_{1c}$  expressed per 1 % ( $\approx$  10 mmol/mol); SBP rescaled to 10 mmHg increments; TG:HDL ratio natural log-transformed, OR reflects change per 1-unit increase in ln(TG:HDL).

appropriate care, which could also contribute to delayed detection and suboptimal management of risk factors. Addressing these disparities will require both clinical and public health interventions that integrate culturally grounded models of care and targeted early screening strategies [34,35].

Given these complexities, a more comprehensive and targeted approach to managing DKD risk is required. The combination of eGFR and UACR as a composite measure offers significant promise for early detection and more effective risk stratification. This approach enables healthcare providers to identify individuals at higher risk for progressive renal disease and tailor interventions, accordingly, improving clinical outcomes. Early identification and management of renal impairment are crucial, particularly in young adults, who are at risk for prolonged disease duration and subsequent complications like DKD. By stratifying risk using eGFR/UACR, timely interventions can prevent DKD progression, enhance quality of life, and reduce healthcare costs associated with advanced renal disease.

The lack of association between BMI and DKD risk in our study has also been shown in other research [28,36], and this finding may be mediated through ethnic differences in body composition. Māori and Pacific people typically have a higher proportion of lean muscle mass relative to body fat when compared to other ethnic groups [37]. While BMI can serve as a general indicator of obesity-related risk, it does not distinguish between muscle and fat mass and may overestimate obesity-related risk in these populations. Furthermore, Māori and Pacific people often develop cardiometabolic risk factors such as hypertension, dyslipidaemia, and hyperglycaemia at younger ages or lower BMI thresholds, reducing BMI's predictive power in isolation [38]. Socioeconomic factors, including limited access to healthcare, healthy nutrition, and physical activity opportunities, also contribute substantially to DKD risk, overshadowing BMI's influence [34].

The consistency of associations across several clinically relevant subgroups lends support to the robustness of our primary findings. Specifically, the direction and magnitude of associations with TG:HDL ratio and  $HbA_{1c}$  remained generally stable across obesity and

antihypertensive strata. However, subgroup analyses revealed potential effect modification for some predictors likely reflecting the differences in sample size and power. The relationship between Pacific ethnicity and DKD risk, while strong in the overall cohort, appeared attenuated in nonobese and untreated individuals. Likewise, SBP demonstrated a significant association only in subgroups with obesity or antihypertensive use. These variations highlight the importance of considering subgroup-specific risk profiles in young-onset type 2 diabetes and suggest that certain risk factors may operate differently across clinical contexts. While HbA $_{1c}$ , SBP, and dyslipidaemia are established DKD risk factors, their convergence in young-onset Pacific People with type 2 diabetes suggests an urgent need for earlier and more tailored invention strategies in the high-risk group.

These findings align with prior studies emphasising the influence of ethnic and cardiometabolic factors on kidney disease progression in diabetes [7,12,39]. In particular, disparities in DKD risk among Pacific and Māori populations have been attributed to both clinical and social determinants of health[40,41] and the treatment status have been increasingly recognised [42]. The elevated risk of DKD observed among Māori and Pacific participants appears to be driven, in part, by a greater burden of metabolic and clinical risk factors. These factors are often interrelated and compounded by socioeconomic disadvantage, and earlier onset of cardiometabolic conditions in Māori and Pacific peoples [43]. Collectively, these findings highlight the need for early, culturally responsive interventions that address dyslipidaemia, hypertension, and hyperglycaemia to reduce DKD burden in these high-risk populations.

The strengths of the eGFR/UACR composite variable represents an important tool for enhancing early detection, risk assessment, and intervention strategies for DKD, especially in high-risk populations like young Māori and Pacific People. With further validation and refinement, this approach could lead to more effective, culturally appropriate healthcare practices and improved outcomes for communities disproportionately affected by diabetes-related kidney disease.

While the eGFR/UACR composite measure holds considerable potential, several limitations should be considered. The generalisability of these findings may be limited to Māori and Pacific people, as the biological and environmental/sociocultural factors influencing kidney disease could differ across ethnic groups, potentially reducing the broader applicability of this approach [44]. Additionally, although this composite measure shows promise, further validation is needed to confirm its reliability and clinical utility across diverse patient groups, particularly the inclusion of hyperfiltration from an estimate of GFR. Variability in measurement techniques, such as laboratory protocols and biological fluctuations in eGFR and UACR, could impact the accuracy of this composite variable. Furthermore, the study's cross-sectional design limits our ability to establish causal relationships or track the progression of DKD over time. Longitudinal studies are necessary to better understand how the eGFR/UACR composite variable performs in predicting long-term kidney function decline and DKD progression. Another limitation is the potential for diagnostic misclassification within primary-care and hospital datasets, including the inadvertent inclusion of individuals with type 1 diabetes and monogenic diabetes [45]. Such errors are inherent to studies relying on routinely collected clinical data and may introduce a small degree of uncertainty into phenotype categorisation. The dataset also did not include information on specific classes of antihypertensive agents, precluding assessment of renal-protective medications such as angiotensin-converting enzyme (ACE) inhibitors or angiotensin II receptor blockers (ARBs). While their inclusion may have been of interest, there would have been a problem of confounding by indication, as individuals at higher renal risk are more likely to be prescribed these therapies.

The absence of detailed lifestyle data, such as dietary intake (e.g., salt and protein consumption) and physical activity levels, were not routinely captured in the DCSS database. These factors influence blood pressure, glycaemia, body weight, oxidative stress, and endothelial function, and are known contributors to DKD development and

progression [46–48]. Incorporating lifestyle measures in future risk assessments may help identify modifiable pathways and guide preventive interventions to reduce DKD risk, particularly among young adults with type 2 diabetes.

These findings suggest that routine inclusion of eGFR and TG:HDL ratio alongside  $HbA_{1c}$  and blood pressure in early risk stratification may improve early DKD risk detection in young-onset type 2 diabetes. Identifying individuals with hyperfiltration and/or dyslipidaemia, even in the absence of albuminuria, could support earlier initiation of renoprotective interventions, such as Sodium-Glucose Transport Protein 2 (SGLT2) inhibitors or Renin-Angiotensin System (RAS) blockade, tailored to ethnic risk profiles.

Based on these findings, we propose a pragmatic screening framework for early DKD risk stratification in young-onset type 2 diabetes. Key markers such as HbA $_{\rm 1c}$ , SBP, and TG:HDL ratio should be monitored regularly from diagnosis, with early intervention thresholds adjusted for ethnicity and treatment history. Pacific individuals and those with obesity or hypertension may benefit from more aggressive early screening for microalbuminuria, CKD and hyperfiltration. Importantly, individuals with hyperfiltration (eGFR  $\geq$ 120 mL/min/1.73 m $^2$ ), even in the absence of albuminuria, may warrant earlier consideration of renoprotective therapies (e.g., RAS blockade or SGLT2 inhibitors), given their elevated DKD risk. This approach may aid clinicians in identifying high-risk individuals earlier, when kidney function is still preserved and interventions are most effective.

In conclusion, this cohort study underscores the heightened risk of DKD among Māori and Pacific People compared to New Zealand Europeans, as well as the importance in considering both clinical and sociodemographic factors, highlighting the need for targeted interventions aimed at improving health outcomes for these populations, particularly among Māori and Pacific People under 40 years of age in New Zealand. Further research is warranted to explore the underlying causes of these disparities and develop tailored strategies for these high-risk groups.

#### 5. Guarantor

David Simmons is the guarantor of this work and, as such, had full access to all data and takes responsibility for the integrity of the data and accuracy of the analysis. All authors reviewed and approved the final manuscript.

# CRediT authorship contribution statement

Kanchana Perera: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Data curation, Conceptualization. John Baker: Writing – review & editing, Visualization, Funding acquisition. Kalpa Jayanatha: Writing – review & editing, Visualization. Karen Pickering: Writing – review & editing, Visualization, Funding acquisition. Richard Cutfield: Writing – review & editing, Visualization, Funding acquisition. Brandon Orr-Walker: Writing – review & editing, Visualization, Funding acquisition. Gerhard Sundborn: Writing – review & editing, Visualization. Andrew Heroy: Writing – review & editing, Software, Formal analysis. Thomas Arnold ScM: Dahai Yu: Writing – review & editing, Visualization, Validation, Supervision, Methodology, Investigation, Funding acquisition, Conceptualization.

# Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

#### Acknowledgements

**Personal Thanks:** A special thank you is extended to the team at Diabetes Foundation Aotearoa, as well as to the authors' advisors and peers, for their support and guidance in conducting this research. The opinions expressed in this manuscript are those of the authors and do not necessarily reflect the views of the Māori or Pacific communities.

**Funding and assistance:** This work was supported by funding from the Diabetes Foundation Aotearoa Board of Trustees. The DCSS was funded by the New Zealand Ministry of Health through Counties Manukau Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of Western Sydney University or Diabetes Foundation Aotearoa.

**Prior Presentation:** A condensed version of this work was presented as an oral presentation at the New Zealand Society for the Study of Diabetes (NZSSD) conference in Christchurch, New Zealand (2–4 May 2024), and at the International Diabetes Epidemiology Group (IDEG) symposium in Bangkok, Thailand (3–6 April 2025).

**Disclaimer:** The opinions or assertions contained herein are the private views of the authors and do not necessarily reflect the views of Western Sydney University or any of the funders.

# Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.diabres.2025.113018.

#### References

- [1] Alarming rise in young-onset type 2 diabetes. Lancet Diab Endocrinol 2024;12(7): 433. https://doi.org/10.1016/S2213-8587(24)00161-X.
- [2] Kaptoge S, et al. Life expectancy associated with different ages at diagnosis of type 2 diabetes in high-income countries: 23 million person-years of observation. Lancet Diab Endocrinol 2023;11(10):731–42. https://doi.org/10.1016/S2213-8587(23) 00233.1
- [3] Soon HS. Complication characteristics between young-onset type 2 versus type 1 diabetes in a UK population. BMJ Open Diabetes Res Care 2015;3:e000044.
- [4] Magliano DJ, Islam RM, Barr ELM, et al. Trends in incidence of total or type 2 diabetes: systematic review. BMJ 2019;366:l5003. https://doi.org/10.1136/bmj. 15003.
- [5] Hillier TA, Pedula KL. Complications in young adults with early-onset type 2 diabetes: losing the relative protection of youth. Diabetes Care 2003;26(11): 2999–3005. https://doi.org/10.2337/diacare.26.11.2999.
- [6] Klein KR, Buse JB. Further RISE ing to the challenge of type 2 diabetes in youth. Diabetes Care 2021;44(9):1934–7. https://doi.org/10.2337/dci21-0023.
- [7] Alicic RZ, Rooney MT, Tuttle KR. Diabetic kidney disease: challenges, progress, and possibilities. Clin J Am Soc Nephrol 2017;12(12):2032–45. https://doi.org/ 10.2215/CJN.11491116.
- [8] National Kidney Foundation. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013;3(1): 1–150. https://doi.org/10.1038/kisup.2012.73.
- [9] Coppell KJ, Mann JI, Williams SM, et al. Prevalence of diagnosed and undiagnosed diabetes and prediabetes in New Zealand: findings from the 2008/09 Adult Nutrition Survey. NZ Med J 2013;126(1370):23–42.
- [10] Sundborn G, Metcalf P, Scragg R, et al. Ethnic differences in diabetes prevalence and cardiovascular risk factors in the New Zealand Diabetes, Heart and Health Survey. NZ Med J 2010;123(1325):88–96.
- [11] De Boer IH, Rue TC, Hall YN, Heagerty PJ, Weiss NS, Himmelfarb J. Temporal trends in the prevalence of diabetic kidney disease in the United States. J Am Med Assoc 2011;305(24):2532–9. https://doi.org/10.1001/jama.2011.861.
- [12] Thomas MC, Brownlee M, Susztak K, et al. Diabetic kidney disease. Nat Rev Dis Primers 2015;1:15018. https://doi.org/10.1038/nrdp.2015.18.
- [13] Simmons D, Flemin CE, Cutfield R, Patel A, Innes J, Wellingham J. The diabetes care support service for general practitioners in Auckland. NZ Med J 1997;110: 48–50.
- [14] Robinson T, Simmons D, Scott D, et al. Ethnic differences in type 2 diabetes care and outcomes in Auckland: a multiethnic community in New Zealand. NZ Med J 2006;119:U1997.
- [15] Simmons D, Kirkwood M, Maxwell S, Weblemoe T, Garland BA, Richards D. Community networking as a means for identifying people with diabetes in a rural, predominantly bicultural community in New Zealand. NZ Med J 1999;112:361.
- [16] Yu D, Zhao Z, Osuagwu UL, Pickering K, Baker J, Cutfield R, et al. Ethnic differences in mortality and hospital admission rates between Māori, Pacific, and European New Zealanders with type 2 diabetes between 1994 and 2018: a retrospective, population-based, longitudinal cohort study. Lancet Glob Health 2021;9(2):e209–17.

- [17] Yu D, Wang Z, Cai Y, McBride K, Osuagwu UL, Pickering K, et al. Ethnic differences in cancer rates among adults with type 2 diabetes in New Zealand from 1994 to 2018. JAMA Netw Open 2022;5(2).
- [18] Atkinson J, Salmond C, Crampton P. NZDep2013 index of deprivation; 2014; https://www.otago.ac.nz/wellington/otago069936.pdf (accessed Apr 9, 2025).
- [19] Ruggenenti P, Porrini EL, Gaspari F, Motterlini N, Cannata A, Carrara F, et al. Glomerular hyperfiltration and renal disease progression in type 2 diabetes. Diabetes Care 2012;35(10):2061–8. https://doi.org/10.2337/dc11-2189.
- [20] Hsu CY, McCulloch CE, Iribarren C, Darbinian J, Go AS. Body mass index and risk for end-stage renal disease. Ann Intern Med 2006;144(1):21–8. https://doi.org/ 10.7326/0003-4819-144-1-200601030-00006.
- [21] de Boer IH, Katz R, Fried LF, et al. Obesity and change in estimated GFR among older adults. Am J Kidney Dis 2009;54(6):1043–51. https://doi.org/10.1053/j. aikd.2009.06.016.
- [22] Wang Y, Chen X, Song Y, Caballero B, Cheskin LJ. Association between obesity and kidney disease: a systematic review and meta-analysis. Kidney Int 2008;73(1): 19–33. https://doi.org/10.1038/sj.ki.5002586.
- [23] TODAY Study Group. Rapid rise in albuminuria and emergence of diabetic kidney disease in youth with type 2 diabetes. N Engl J Med 2021;385(5):416–26. https:// doi.org/10.1056/NEJMoa2022152.
- [24] Dabelea D, Stafford JM, Mayer-Davis EJ, et al. Association of type 1 diabetes vs type 2 diabetes diagnosed during childhood and adolescence with complications during teenage years and young adulthood. J Am Med Assoc 2017;317(8):825–35. https://doi.org/10.1001/jama.2017.0686.
- [25] Bjornstad P, Cherney DZI, Maahs DM. Early diabetic nephropathy in type 1 diabetes: new insights. Curr Opin Endocrinol Diabetes Obes 2014;21(4):279–86. https://doi.org/10.1097/MED.000000000000075.
- [26] Rodriguez BL, Fujimoto WY, Mayer-Davis EJ, et al. Prevalence of CKD and associated risk factors among youth with diabetes in the SEARCH study. Pediatrics 2016;137(4):e20153475. https://doi.org/10.1542/peds.2015-3475.
- [27] Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney Int Suppl 2022;12(1):7–11. https://doi.org/10.1016/j.kisu.2021.11.003.
- [28] Kearns B, Schierhout G, Hoare P, et al. Socioeconomic determinants of health and access to healthcare in Māori and Pacific youth with diabetes. Int J Equity Health 2017;16(1):93. https://doi.org/10.1186/s12939-017-0629-3.
- [29] Premaratne E, Verma S, Ekinci EI, Thekkepat S, Jerums G, MacIsaac RJ. The impact of hyperfiltration on the progression of diabetic nephropathy in type 2 diabetes. Diabetologia 2008;51(10):1919–25.
- [30] Afkarian M, Sachs MC, Kestenbaum B, et al. Kidney disease and increased mortality risk in type 2 diabetes. J Am Soc Nephrol 2013;24(2):302–8. https://doi.org/ 10.1681/ASN.2012070718.
- [31] Vega GL, Grundy SM. Metabolic risk susceptibility in people with high triglycerideto-HDL cholesterol ratios. Am J Cardiol 2012;109(5):715–20. https://doi.org/ 10.1016/j.amjcard.2011.10.048.
- [32] Satirapoj B, Adler SG. Prevalence and pathophysiology of diabetic kidney disease. Semin Nephrol 2014;34(5):498–508.
- [33] Mannon EC, et al. Genetic determinants of diabetic kidney disease. Curr Diab Rep 2022;22(10):427–39.
- [34] Harwood M, et al. Indigenous health equity: improving diabetes outcomes in Māori and Pacific populations. Lancet Diabetes Endocrinol 2021;9(8):485–6.
- [35] Cormack DM, et al. Culturally safe models of chronic disease care for Māori and Pacific peoples: a systematic review. Int J Equity Health 2018;17:100.
- [36] Tuttle KR, Bakris GL, Bilous RW, et al. Diabetic kidney disease: a report from an ADA Consensus Conference. Diabetes Care 2014;37(10):2864–83. https://doi.org/ 10.2337/dc14-1296.
- [37] Richards D, Swinburn B. Body composition differences and their implications for health outcomes in Pacific and Māori populations. NZ Med J 2015;128(1419): 17–24
- [38] Sundborn G, Metcalf P, Gentles D, et al. Ethnic differences in cardiovascular disease risk factors and diabetes status for Pacific peoples and Europeans living in New Zealand: a cross-sectional study of a national cohort. Ethn Health 2010;15(6): 613–24. https://doi.org/10.1080/13557858.2010.502590.
- [39] Afkarian M, et al. Clinical manifestations of kidney disease among US adults with diabetes. J Am Med Assoc 2016;316(6):602–10.
- [40] Sundborn G, et al. Ethnic disparities in diabetes complications in New Zealand: a review. N Z Med J 2010;123(1321):84–96.
- [41] Harwood M, et al. Māori and Pacific peoples and the burden of diabetes. N Z Med J 2016;129(1434):9–16.
- [42] Sattar N, et al. Obesity, hypertension and antihypertensive treatment effects on renal outcomes. Lancet Diabetes Endocrinol 2020;8(12):965–75.
- [43] Ministry of Health NZ. Annual update of key results 2019/20: New Zealand Health Survey. Wellington: Ministry of Health; 2020.
- [44] Zhao Y, Dong X, Sun L, et al. Ethnic differences in the clinical presentation of diabetic kidney disease. Diabetes Metab Res Rev 2018;34(5):e3013.
- [45] de Lusignan S, Sadek N, Mulnier H, Tahir A, Russell-Jones D, Khunti K. Miscoding, misclassification and misdiagnosis of diabetes in primary care. Diabet Med 2012 Feb;29(2):181–9. https://doi.org/10.1111/j.1464-5491.2011.03419.x. PMID: 21883428.
- [46] He J, Mills KT. A global view of dietary sodium intake and blood pressure. Nat Rev Nephrol 2020;16(12):687–8. https://doi.org/10.1038/s41581-020-00369-4.
- [47] Kalantar-Zadeh K, Fouque D. Nutritional management of chronic kidney disease. N Engl J Med 2017;377(18):1765–76. https://doi.org/10.1056/NEJMra1700312.
- [48] Robinson-Cohen C, Littman AJ, Duncan GE, et al. Physical activity and change in estimated GFR among persons with CKD. J Am Soc Nephrol 2009;20(9): 1996–2003. https://doi.org/10.1681/ASN.2008121221.